APLICAÇÃO DA ANÁLISE FATORIAL EXPLORATÓRIA NO SOFTWARE FACTOR: UM TUTORIAL METODOLÓGICO PARA PESQUISADORES DA ÁREA DE MARKETING

Eduardo Teixeira Magalhães, Thaís Ligieri Zagnoli Cunha, David Chester Carvalho Barros, Rita de Cássia Leal Campos

Resumo


Este artigo teve como objetivo apresentar um tutorial metodológico para a realização de Análise Fatorial Exploratória (AFE) no software Factor, com foco na configuração dos parâmetros e na aplicação das melhores práticas estatísticas em pesquisas com dados de autorrelato. Como exemplo prático, utilizou-se a escala de Yi e Gong (2013), aplicada em um estudo real na área de marketing. A pesquisa reforça a segurança da utilização dessa escala em pesquisas de marketing que buscam mensurar o comportamento de cocriação, considerando as características específicas de determinado segmento de mercado e o comportamento do consumidor. Além disso, é fornecido um guia didático para a replicação da técnica e tratamento de dados em qualquer banco de dados derivado de autorrelatos, condição inerente aos questionários utilizados em pesquisas de marketing. Pesquisadores da área de marketing são incentivados a utilizar o caminho empregado. Espera-se que o software Factor seja uma ferramenta comum ao desenvolvimento de AFEs, tendo em vista a qualidade e robustez proporcionadas pela ferramenta. As práticas de análise de dados podem ser aprimoradas, gerando insights  a partir de pesquisas baseadas em autorrelatos, particularmente relevantes para questões de pesquisa relacionadas a aspectos sociais e de gestão.


Palavras-chave


Análise Fatorial Exploratória, Pesquisa em Administração, Factor, Tutorial

Texto completo:

PDF

Referências


ASPAROUHOV, T.; MUTHÉN, B. Weighted least squares estimation with missing data. Mplus technical appendix, v. 2010, n. 1-10, p. 5, 2010. Disponível em: https://www.statmodel.com/download/TechAppendix_1.pdf

BAGLIN, J. Improving your exploratory factor analysis for ordinal data: A demonstration using FACTOR. Practical assessment, research & evaluation, v. 19, n. 5, p. n5, 2014. https://doi.org/10.7275/dsep-4220

BROWN, T. Confirmatory factor analysis for applied research. Guilford publications, 2015.

BROWNE, M.; CUDECK, R. Alternative ways of assessing model fit. Sociological methods & research, v. 21, n. 2, p. 230-258, 1992.

BYRNE, B. Structural equation modeling with Mplus: Basic concepts, applications, and programming. Routledge, 2013.

CHURCHILL, G. A paradigm for developing better measures of marketing constructs. Journal of marketing research, v. 16, n. 1, p. 64-73, 1979. https://doi.org/10.1177/002224377901600110

COSTELLO, A.; OSBORNE, J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical assessment, research, and evaluation, v. 10, n. 1, 2005. https://doi.org/10.7275/jyj1-4868

DANCEY, C.; REIDY, J. Statistics without maths for psychology. Pearson education, 2007.

DISTEFANO, C.; MORGAN, G. A comparison of diagonal weighted least squares robust estimation techniques for ordinal data. Structural Equation Modeling: a multidisciplinary journal, v. 21, n. 3, p. 425-438, 2014. https://doi.org/10.1080/10705511.2014.908286

EFRON, B.; TIBSHIRANI, R. An introduction to thc bootstrap. 1993.

FABRIGAR, L. et al. Evaluating the use of exploratory factor analysis in psychological research. Psychological methods, v. 4, n. 3, p. 272, 1999. https://doi.org/10.1037/1082-989X.4.3.272

FABRIGAR, L.; WEGENER, D. Exploratory factor analysis. Oxford University Press, 2012.

FERRANDO, P.; LORENZO-SEVA, U. Program FACTOR at 10: Origins, development and future directions. Psicothema, v. 29, n. 2, p. 236-240, 2017. https://doi.org/10.7334/psicothema2016.304

FERRANDO, P.; LORENZO-SEVA, U. Assessing the quality and appropriateness of factor solutions and factor score estimates in exploratory item factor analysis. Educational and psychological measurement, v. 78, n. 5, p. 762-780, 2018. https://doi.org/10.1177/0013164417735351

FIELD, A.; FIELD, Z.; MILES, J. Discovering statistics using R. 2012.

FLORA, D.; CURRAN, P. An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological methods, v. 9, n. 4, p. 466, 2004. https://doi.org/10.1037/1082-989X.9.4.466

FLOYD, F.; WIDAMAN, K. Factor analysis in the development and refinement of clinical assessment instruments. Psychological assessment, v. 7, n. 3, p. 286, 1995. https://doi.org/10.1037/1040-3590.7.3.256

HOLM, M. et al. Psychometric evaluation of the anticipatory grief scale in a sample of family caregivers in the context of palliative care. Health and quality of life outcomes, v. 17, p. 1-11, 2019.

HAIR, J. et al. Multivariate data analysis. Uppersaddle River. 2006.

HAIR, J. et al. Análise multivariada de dados. Bookman editora, 2009.

HINKIN, T. A review of scale development practices in the study of organizations. Journal of management, v. 21, n. 5, p. 967-988, 1995. https://doi.org/10.1177/014920639502100509

HOELZLE, J.; MEYER, G. The invariant component structure of the Personality Assessment Inventory (PAI) full scales. Journal of Personality Assessment, v. 91, n. 2, p. 175-186, 2009.

HOLGADO–TELLO, F. et al. Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables. Quality & Quantity, v. 44, p. 153-166, 2010. https://doi.org/10.1007/s11135-008-9190-y

HORN, J. A rationale and test for the number of factors in factor analysis. Psychometrika, v. 30, n. 2, p. 179-185, 1965. https://doi.org/10.1007/BF02289447

HU, L.; BENTLER, P. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, v. 6, n. 1, p. 1-55, 1999. https://doi.org/10.1080/10705519909540118

HUTCHESON, G.; SOFRONIOU, N. The multivariate social scientist: Introductory statistics using generalized linear models. 1999.

JENNRICH, R.; SAMPSON, P. Rotation for simple loadings. Psychometrika, v. 31, n. 3, p. 313-323, 1966. https://doi.org/10.1007/BF02289451

JÖRESKOG, K. A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, v. 34, n. 2, p. 183-202, 1969.

JÖRESKOG, K. A general method for estimating a linear structural equation system. ETS Research Bulletin Series, v. 1970, n. 2, p. i-41, 1970.

JÖRESKOG, K.; SÖRBOM, D.; MAGIDSON, J. Advances in factor analysis and structural equation models, 1979.

KAISER, H. A second generation little jiffy. Psychometrika, v. 35, n. 4, p. 401-415, 1970. https://doi.org/10.1007/BF02291817

KLINE, Paul. Psychometrics and psychology: The science of measurement and the meaning of mental constructs. Psychological Science, 1979. https://doi.org/10.1177/0956797615581221

LAWLEY, D.; MAXWELL, A. Factor analysis as a statistical method. Journal of the Royal Statistical Society. Series D (The Statistician), v. 12, n. 3, p. 209-229, 1962.

LEE, S. Structural equation modeling: A Bayesian approach. John Wiley & Sons, 2007.

LLORET-SEGURA, S. et al. El análisis factorial exploratorio de los ítems: una guía práctica, revisada y actualizada. Anales de psicología/annals of psychology, v. 30, n. 3, p. 1151-1169, 2014. https://doi.org/10.6018/analesps.30.3.199361

LORENZO-SEVA, U.; VAN GINKEL, J. Imputación múltiple de valores perdidos en el análisis factorial exploratorio de escalas multidimensionales: Estimación de las puntuaciones de rasgos latentes. Anales de Psicología, v. 32, n. 2, p. 596-608, 2016. https://doi.org/10.6018/analesps.32.2.209811

LORENZO-SEVA, U.; TIMMERMAN, M.; KIERS, H. The Hull method for selecting the number of common factors. Multivariate behavioral research, v. 46, n. 2, p. 340-364, 2011. https://doi.org/10.1080/00273171.2011.568924

MALHOTRA, N. Marketing research: an applied prientation. pearson, 2020.

MARDIA, K. Measures of multivariate skewness and kurtosis with applications. Biometrika, v. 57, n. 3, p. 519-530, 1970. https://doi.org/10.1093/biomet/57.3.519

MEREDITH, W. Measurement invariance, factor analysis and factorial invariance. Psychometrika, v. 58, n. 4, p. 525-543, 1993. https://doi.org/10.1007/BF02294825

MUTHÉN, B.; ASPAROUHOV, Tihomir. Bayesian structural equation modeling: a more flexible representation of substantive theory. Psychological methods, v. 17, n. 3, p. 313, 2012. https://doi.org/10.1037/a0026802

DO NASCIMENTO, E.; SILVA, R.; FONSECA, J. Aprimorando a aplicação da Análise Fatorial Exploratória: um exemplo didático com dados de comportamento do consumidor. CONTRIBUCIONES A LAS CIENCIAS SOCIALES, [S. l.], v. 17, n. 2, p. e5463, 2024. https://doi.org/10.55905/revconv.17n.2-371

PASQUALI, L. TRI-Teoria de Resposta ao Item: teoria, procedimentos e aplicações. Editora Appris, 2018.

PETT, M.; LACKEY, N.; SULLIVAN, J. Making sense of factor analysis: The use of factor analysis for instrument development in health care research. Sage, 2003.

ROGERS, P. Melhores práticas para sua análise fatorial exploratória: tutorial no factor. Revista de Administração Contemporânea, v. 26, p. e210085, 2022. https://doi.org/10.1590/1982-7849rac2022210085.por

SCHMITT, T.; SASS, D. Rotation criteria and hypothesis testing for exploratory factor analysis: Implications for factor pattern loadings and interfactor correlations. Educational and Psychological Measurement, v. 71, n. 1, p. 95-113, 2011. https://doi.org/10.1037/a0022962

SOUZA, J.; SOUZA, L.; LUIZ, E. Análise fatorial exploratória na avaliação das políticas educacionais em curso de pós-graduação. E&S Engineering and Science, v. 13, n. 1, p. 1-17, 2024. https://doi.org/10.18607/ES20241315419

SPEARMAN, C. The proof and measurement of association between two things. 1961. https://doi.org/10.2307/1412159

TABACHNICK, B. Using multivariate statistics. Alyn and Bacon, 2007.

THURSTONE, L. Multiple-factor analysis. University of Chicago Press, 1947.

TIMMERMAN, M.; LORENZO-SEVA, U. Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological methods, v. 16, n. 2, p. 209, 2011. https://doi.org/10.1037/a0023357

TRIZANO-HERMOSILLA, I.; ALVARADO, J. Best alternatives to Cronbach's alpha reliability in realistic conditions: congeneric and asymmetrical measurements. Frontiers in psychology, v. 7, p. 769, 2016. https://doi.org/10.3389/fpsyg.2016.00769

VANDENBERG, R.; LANCE, C. A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational research methods, v. 3, n. 1, p. 4-70, 2000. https://doi.org/10.1177/109442810031002

VELICER, W. Determining the number of components from the matrix of partial correlations. Psychometrika, v. 41, n. 3, p. 321-327, 1976. https://doi.org/10.1007/BF02293557

VENTURA-LEÓN, J.; PEÑA-CALERO, B. The world should not revolve around Cronbach's alpha≥. 70. Adicciones, v. 33, n. 4, p. 369-372, 2021. https://doi.org/10.3389/fpsyg.2020.00769

YI, Y.; GONG, T. Customer value co-creation behavior: Scale development and validation. Journal of Business research, v. 66, n. 9, p. 1279-1284, 2013. https://doi.org/10.1016/j.jbusres.2012.07.002




DOI: https://doi.org/10.13059/racef.v16i3.1320

Apontamentos

  • Não há apontamentos.


Direitos autorais 2025 Revista de Administração, Contabilidade e Economia da Fundace

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Sem derivações 4.0 Internacional.

ISSN: 2178-7638