APLICAÇÃO DA ANÁLISE FATORIAL EXPLORATÓRIA NO SOFTWARE FACTOR: UM TUTORIAL METODOLÓGICO PARA PESQUISADORES DA ÁREA DE MARKETING
Resumo
Este artigo teve como objetivo apresentar um tutorial metodológico para a realização de Análise Fatorial Exploratória (AFE) no software Factor, com foco na configuração dos parâmetros e na aplicação das melhores práticas estatísticas em pesquisas com dados de autorrelato. Como exemplo prático, utilizou-se a escala de Yi e Gong (2013), aplicada em um estudo real na área de marketing. A pesquisa reforça a segurança da utilização dessa escala em pesquisas de marketing que buscam mensurar o comportamento de cocriação, considerando as características específicas de determinado segmento de mercado e o comportamento do consumidor. Além disso, é fornecido um guia didático para a replicação da técnica e tratamento de dados em qualquer banco de dados derivado de autorrelatos, condição inerente aos questionários utilizados em pesquisas de marketing. Pesquisadores da área de marketing são incentivados a utilizar o caminho empregado. Espera-se que o software Factor seja uma ferramenta comum ao desenvolvimento de AFEs, tendo em vista a qualidade e robustez proporcionadas pela ferramenta. As práticas de análise de dados podem ser aprimoradas, gerando insights a partir de pesquisas baseadas em autorrelatos, particularmente relevantes para questões de pesquisa relacionadas a aspectos sociais e de gestão.
Palavras-chave
Texto completo:
PDFReferências
ASPAROUHOV, T.; MUTHÉN, B. Weighted least squares estimation with missing data. Mplus technical appendix, v. 2010, n. 1-10, p. 5, 2010. Disponível em: https://www.statmodel.com/download/TechAppendix_1.pdf
BAGLIN, J. Improving your exploratory factor analysis for ordinal data: A demonstration using FACTOR. Practical assessment, research & evaluation, v. 19, n. 5, p. n5, 2014. https://doi.org/10.7275/dsep-4220
BROWN, T. Confirmatory factor analysis for applied research. Guilford publications, 2015.
BROWNE, M.; CUDECK, R. Alternative ways of assessing model fit. Sociological methods & research, v. 21, n. 2, p. 230-258, 1992.
BYRNE, B. Structural equation modeling with Mplus: Basic concepts, applications, and programming. Routledge, 2013.
CHURCHILL, G. A paradigm for developing better measures of marketing constructs. Journal of marketing research, v. 16, n. 1, p. 64-73, 1979. https://doi.org/10.1177/002224377901600110
COSTELLO, A.; OSBORNE, J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical assessment, research, and evaluation, v. 10, n. 1, 2005. https://doi.org/10.7275/jyj1-4868
DANCEY, C.; REIDY, J. Statistics without maths for psychology. Pearson education, 2007.
DISTEFANO, C.; MORGAN, G. A comparison of diagonal weighted least squares robust estimation techniques for ordinal data. Structural Equation Modeling: a multidisciplinary journal, v. 21, n. 3, p. 425-438, 2014. https://doi.org/10.1080/10705511.2014.908286
EFRON, B.; TIBSHIRANI, R. An introduction to thc bootstrap. 1993.
FABRIGAR, L. et al. Evaluating the use of exploratory factor analysis in psychological research. Psychological methods, v. 4, n. 3, p. 272, 1999. https://doi.org/10.1037/1082-989X.4.3.272
FABRIGAR, L.; WEGENER, D. Exploratory factor analysis. Oxford University Press, 2012.
FERRANDO, P.; LORENZO-SEVA, U. Program FACTOR at 10: Origins, development and future directions. Psicothema, v. 29, n. 2, p. 236-240, 2017. https://doi.org/10.7334/psicothema2016.304
FERRANDO, P.; LORENZO-SEVA, U. Assessing the quality and appropriateness of factor solutions and factor score estimates in exploratory item factor analysis. Educational and psychological measurement, v. 78, n. 5, p. 762-780, 2018. https://doi.org/10.1177/0013164417735351
FIELD, A.; FIELD, Z.; MILES, J. Discovering statistics using R. 2012.
FLORA, D.; CURRAN, P. An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological methods, v. 9, n. 4, p. 466, 2004. https://doi.org/10.1037/1082-989X.9.4.466
FLOYD, F.; WIDAMAN, K. Factor analysis in the development and refinement of clinical assessment instruments. Psychological assessment, v. 7, n. 3, p. 286, 1995. https://doi.org/10.1037/1040-3590.7.3.256
HOLM, M. et al. Psychometric evaluation of the anticipatory grief scale in a sample of family caregivers in the context of palliative care. Health and quality of life outcomes, v. 17, p. 1-11, 2019.
HAIR, J. et al. Multivariate data analysis. Uppersaddle River. 2006.
HAIR, J. et al. Análise multivariada de dados. Bookman editora, 2009.
HINKIN, T. A review of scale development practices in the study of organizations. Journal of management, v. 21, n. 5, p. 967-988, 1995. https://doi.org/10.1177/014920639502100509
HOELZLE, J.; MEYER, G. The invariant component structure of the Personality Assessment Inventory (PAI) full scales. Journal of Personality Assessment, v. 91, n. 2, p. 175-186, 2009.
HOLGADO–TELLO, F. et al. Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables. Quality & Quantity, v. 44, p. 153-166, 2010. https://doi.org/10.1007/s11135-008-9190-y
HORN, J. A rationale and test for the number of factors in factor analysis. Psychometrika, v. 30, n. 2, p. 179-185, 1965. https://doi.org/10.1007/BF02289447
HU, L.; BENTLER, P. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, v. 6, n. 1, p. 1-55, 1999. https://doi.org/10.1080/10705519909540118
HUTCHESON, G.; SOFRONIOU, N. The multivariate social scientist: Introductory statistics using generalized linear models. 1999.
JENNRICH, R.; SAMPSON, P. Rotation for simple loadings. Psychometrika, v. 31, n. 3, p. 313-323, 1966. https://doi.org/10.1007/BF02289451
JÖRESKOG, K. A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, v. 34, n. 2, p. 183-202, 1969.
JÖRESKOG, K. A general method for estimating a linear structural equation system. ETS Research Bulletin Series, v. 1970, n. 2, p. i-41, 1970.
JÖRESKOG, K.; SÖRBOM, D.; MAGIDSON, J. Advances in factor analysis and structural equation models, 1979.
KAISER, H. A second generation little jiffy. Psychometrika, v. 35, n. 4, p. 401-415, 1970. https://doi.org/10.1007/BF02291817
KLINE, Paul. Psychometrics and psychology: The science of measurement and the meaning of mental constructs. Psychological Science, 1979. https://doi.org/10.1177/0956797615581221
LAWLEY, D.; MAXWELL, A. Factor analysis as a statistical method. Journal of the Royal Statistical Society. Series D (The Statistician), v. 12, n. 3, p. 209-229, 1962.
LEE, S. Structural equation modeling: A Bayesian approach. John Wiley & Sons, 2007.
LLORET-SEGURA, S. et al. El análisis factorial exploratorio de los ítems: una guía práctica, revisada y actualizada. Anales de psicología/annals of psychology, v. 30, n. 3, p. 1151-1169, 2014. https://doi.org/10.6018/analesps.30.3.199361
LORENZO-SEVA, U.; VAN GINKEL, J. Imputación múltiple de valores perdidos en el análisis factorial exploratorio de escalas multidimensionales: Estimación de las puntuaciones de rasgos latentes. Anales de Psicología, v. 32, n. 2, p. 596-608, 2016. https://doi.org/10.6018/analesps.32.2.209811
LORENZO-SEVA, U.; TIMMERMAN, M.; KIERS, H. The Hull method for selecting the number of common factors. Multivariate behavioral research, v. 46, n. 2, p. 340-364, 2011. https://doi.org/10.1080/00273171.2011.568924
MALHOTRA, N. Marketing research: an applied prientation. pearson, 2020.
MARDIA, K. Measures of multivariate skewness and kurtosis with applications. Biometrika, v. 57, n. 3, p. 519-530, 1970. https://doi.org/10.1093/biomet/57.3.519
MEREDITH, W. Measurement invariance, factor analysis and factorial invariance. Psychometrika, v. 58, n. 4, p. 525-543, 1993. https://doi.org/10.1007/BF02294825
MUTHÉN, B.; ASPAROUHOV, Tihomir. Bayesian structural equation modeling: a more flexible representation of substantive theory. Psychological methods, v. 17, n. 3, p. 313, 2012. https://doi.org/10.1037/a0026802
DO NASCIMENTO, E.; SILVA, R.; FONSECA, J. Aprimorando a aplicação da Análise Fatorial Exploratória: um exemplo didático com dados de comportamento do consumidor. CONTRIBUCIONES A LAS CIENCIAS SOCIALES, [S. l.], v. 17, n. 2, p. e5463, 2024. https://doi.org/10.55905/revconv.17n.2-371
PASQUALI, L. TRI-Teoria de Resposta ao Item: teoria, procedimentos e aplicações. Editora Appris, 2018.
PETT, M.; LACKEY, N.; SULLIVAN, J. Making sense of factor analysis: The use of factor analysis for instrument development in health care research. Sage, 2003.
ROGERS, P. Melhores práticas para sua análise fatorial exploratória: tutorial no factor. Revista de Administração Contemporânea, v. 26, p. e210085, 2022. https://doi.org/10.1590/1982-7849rac2022210085.por
SCHMITT, T.; SASS, D. Rotation criteria and hypothesis testing for exploratory factor analysis: Implications for factor pattern loadings and interfactor correlations. Educational and Psychological Measurement, v. 71, n. 1, p. 95-113, 2011. https://doi.org/10.1037/a0022962
SOUZA, J.; SOUZA, L.; LUIZ, E. Análise fatorial exploratória na avaliação das políticas educacionais em curso de pós-graduação. E&S Engineering and Science, v. 13, n. 1, p. 1-17, 2024. https://doi.org/10.18607/ES20241315419
SPEARMAN, C. The proof and measurement of association between two things. 1961. https://doi.org/10.2307/1412159
TABACHNICK, B. Using multivariate statistics. Alyn and Bacon, 2007.
THURSTONE, L. Multiple-factor analysis. University of Chicago Press, 1947.
TIMMERMAN, M.; LORENZO-SEVA, U. Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological methods, v. 16, n. 2, p. 209, 2011. https://doi.org/10.1037/a0023357
TRIZANO-HERMOSILLA, I.; ALVARADO, J. Best alternatives to Cronbach's alpha reliability in realistic conditions: congeneric and asymmetrical measurements. Frontiers in psychology, v. 7, p. 769, 2016. https://doi.org/10.3389/fpsyg.2016.00769
VANDENBERG, R.; LANCE, C. A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational research methods, v. 3, n. 1, p. 4-70, 2000. https://doi.org/10.1177/109442810031002
VELICER, W. Determining the number of components from the matrix of partial correlations. Psychometrika, v. 41, n. 3, p. 321-327, 1976. https://doi.org/10.1007/BF02293557
VENTURA-LEÓN, J.; PEÑA-CALERO, B. The world should not revolve around Cronbach's alpha≥. 70. Adicciones, v. 33, n. 4, p. 369-372, 2021. https://doi.org/10.3389/fpsyg.2020.00769
YI, Y.; GONG, T. Customer value co-creation behavior: Scale development and validation. Journal of Business research, v. 66, n. 9, p. 1279-1284, 2013. https://doi.org/10.1016/j.jbusres.2012.07.002
DOI: https://doi.org/10.13059/racef.v16i3.1320
Apontamentos
- Não há apontamentos.
Direitos autorais 2025 Revista de Administração, Contabilidade e Economia da Fundace

Esta obra está licenciada sob uma licença Creative Commons Atribuição - Não comercial - Sem derivações 4.0 Internacional.
ISSN: 2178-7638





